Ontogeny of cone photoreceptor mosaics in zebrafish.
نویسندگان
چکیده
Cone photoreceptors in fish are typically arranged into a precise, reiterated pattern known as a "cone mosaic." Cone mosaic patterns can vary in different fish species and in response to changes in habitat, yet their function and the mechanisms of their development remain speculative. Zebrafish (Danio rerio) have four cone subtypes arranged into precise rows in the adult retina. Here we describe larval zebrafish cone patterns and investigate a previously unrecognized transition between larval and adult cone mosaic patterns. Cone positions were determined in transgenic zebrafish expressing green fluorescent protein (GFP) in their UV-sensitive cones, by the use of multiplex in situ hybridization labelling of various cone opsins. We developed a "mosaic metric" statistical tool to measure local cone order. We found that ratios of the various cone subtypes in larval and adult zebrafish were statistically different. The cone photoreceptors in larvae form a regular heterotypic mosaic array; i.e., the position of any one cone spectral subtype relative to the other cone subtypes is statistically different from random. However, the cone spectral subtypes in larval zebrafish are not arranged in continuous rows as in the adult. We used cell birth dating to show that the larval cone mosaic pattern remains as a distinct region within the adult retina and does not reorganize into the adult row pattern. In addition, the abundance of cone subtypes relative to other subtypes is different in this larval remnant compared with that of larvae or canonical adult zebrafish retina. These observations provide baseline data for understanding the development of cone mosaics via comparative analysis of larval and adult cone development in a model species.
منابع مشابه
A moving wave patterns the cone photoreceptor mosaic array in the zebrafish retina.
In this paper, we describe the embryonic origin and patterning of the planar mosaic array of cone photoreceptor spectral subtypes in the zebrafish retina. A discussion of possible molecular mechanisms that might generate the cone mosaic array considers but discards a model that accounts for formation of neuronal mosaics in the inner retina and discusses limitations of mathematical simulations t...
متن کاملImaging the adult zebrafish cone mosaic using optical coherence tomography
Zebrafish (Danio rerio) provide many advantages as a model organism for studying ocular disease and development, and there is great interest in the ability to non-invasively assess their photoreceptor mosaic. Despite recent applications of scanning light ophthalmoscopy, fundus photography, and gonioscopy to in vivo imaging of the adult zebrafish eye, current techniques either lack accurate scal...
متن کاملAvian Cone Photoreceptors Tile the Retina as Five Independent, Self-Organizing Mosaics
The avian retina possesses one of the most sophisticated cone photoreceptor systems among vertebrates. Birds have five types of cones including four single cones, which support tetrachromatic color vision and a double cone, which is thought to mediate achromatic motion perception. Despite this richness, very little is known about the spatial organization of avian cones and its adaptive signific...
متن کاملA mutation in the cone-specific pde6 gene causes rapid cone photoreceptor degeneration in zebrafish.
Photoreceptor degeneration is a common cause of inherited blindness worldwide. We have identified a blind zebrafish mutant with rapid degeneration of cone photoreceptors caused by a mutation in the cone phosphodiesterase c (pde6c) gene, a key regulatory component in cone phototransduction. Some rods also degenerate, primarily in areas with a low density of rods. Rod photoreceptors in areas of t...
متن کاملParallel visual cycles in the zebrafish retina.
Vertebrate vision necessitates continuous recycling of the chromophore 11-cis retinal (RAL). The classical (or canonical) visual cycle employs a number of enzymes located in the photoreceptor outer segment and RPE (retinal pigment epithelium) of the retina to regenerate 11-cis RAL from all-trans RAL. Cone-dominant species are believed to utilize a second, intra-retinal, pathway for 11-cis RAL g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of comparative neurology
دوره 518 20 شماره
صفحات -
تاریخ انتشار 2010